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Many researchers claim that task switching requires reconfiguration of the 
cognitive system. Others claim that task switching involves cue-based mem-
ory retrieval processes and not reconfiguration. We evaluate these competing 
claims by developing both reconfiguration and cue-based memory models in 
a common theoretical framework and by fitting the models to target func-
tions, which show how performance on individual target stimuli varies de-
pending on the task subjects perform on the targets. Our analyses show that 
the process of compound-cue retrieval – using the task cue and the target as 
joint retrieval cues to select a response from memory – is sufficient to explain 
target functions for parity and magnitude judgments of digits and that recon-
figuration does not seem to add anything to the explanation. We address the 
generality of this conclusion and speculate about the conditions under which 
reconfiguration may be necessary for task switching.

Introduction

From a computational perspective, we humans are general-purpose proc-
essors. We can do many different tasks, often on a moment’s notice, and we 
are often as comfortable with novel tasks as with familiar ones. From the 
perspective of computational models of cognition, we are special-purpose 
processors, built to do particular tasks, like the Stroop task or the stop-signal 
task. Our behaviour can be explained very well by the limited set of proc-
esses required for these tasks, as if we had no other capabilities. Research 
on task switching is intended to bridge the gap between these perspectives, 
explaining how we can do many different things by reconfiguring ourselves 
as special-purpose processors designed for the task at hand (Monsell, 2003; 
Vandierendonck, Liefooghe, & Verbruggen, 2010). How we manage to do 
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this is a matter of ongoing debate. Many researchers endorse the idea that 
we actually reconfigure ourselves, reprogramming our cognitive systems for 
the specific demands of each particular task (e.g., Meiran, 1996; Monsell & 
Mizon, 2006; Rogers & Monsell, 1995). Our approach has challenged this 
idea, arguing that much of cognition – and most cognition in task-switching 
experiments – relies on cue-based memory retrieval, and task switching often 
involves nothing more than changing the cues that drive the retrieval proc-
ess. The purpose of this article is to address this debate with a computational 
modelling framework that can instantiate both reconfiguration and cue-based 
retrieval accounts to determine which account best explains the data.

Defining reconfiguration

The concept of reconfiguration is based on the idea that performance of 
a particular task depends on a special state of preparation called a task set. 
Reconfiguration involves changing task set: abandoning the state of prepara-
tion that was appropriate for the previous task and engaging a different state 
of preparation that is appropriate for the new task (e.g., Meiran, 1996; Mon-
sell & Mizon, 2006; Rogers & Monsell, 1995). A key question for reconfigu-
ration theorists is how task sets are specified: what are the states of prepara-
tion that enable task performance? Despite the broad appeal of the concept 
of reconfiguration, few theorists have been very specific about what task sets 
consist of and few researchers have investigated changes in specific compo-
nents of task sets (but see Logan, 2005; Schneider & Logan, 2007a).

Reconfiguration and switch costs
Many researchers have defined reconfiguration operationally in terms of 

switch costs, which are the differences in response time (RT) and accuracy 
between trials on which tasks repeat and trials on which tasks switch. Switch 
costs are generally large, and researchers have assumed that such large ef-
fects must reflect a qualitative difference in processing. In particular, they 
have assumed that switch costs reflect the time required for reconfiguration. 
Reconfiguration is required on task switch trials but not on task repetition 
trials, so reconfiguration time can be estimated simply by subtracting task 
repetition RT from task switch RT (Meiran, 1996; Rogers & Monsell, 1995). 
However, there are alternative interpretations of switch costs that do not at-
tribute them to reconfiguration (Allport, Styles, & Hsieh, 1994; Logan & 
Bundesen, 2003; Schneider & Logan, 2005), so reconfiguration must be de-
fined in some other way.

Reconfiguration and target functions
Some researchers have argued that task switching must involve reconfigu-
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ration because subjects respond appropriately to the new task on task-switch 
trials. This, too, is subject to alternative interpretations. In our view, chang-
ing the retrieval cues changes what is retrieved from memory, so changing 
task cues can change the responses that are retrieved and enable appropriate 
responses to the new task (Logan & Bundesen, 2003; Schneider & Logan, 
2005, 2009). In this article, we explore a more detailed version of this per-
spective, analysing target functions, which are plots of performance meas-
ures for the different target stimuli presented in an experiment when subjects 
perform different tasks. Figure 1 presents target functions for parity (odd or 
even) and magnitude (lower or higher than 5) judgments of digits from Sch-
neider and Logan (2005), averaging over all three experiments and plotting 
RT as a function of the digits that were presented (more details are presented 
below). The target function changes markedly from one task to another. The 
target function for the magnitude task is peaked at the middle around the ref-
erence point (the digit 5) and decreases monotonically for digits that are pro-
gressively lower and higher than the reference point. The target function for 
the parity task has a very different shape. It is less systematic but appears as a 
kind of saw-tooth pattern, with longer RTs for odd digits than for even digits.

The target functions in Figure 1 could be interpreted as evidence for 
reconfiguration. The same digits are responded to very differently under dif-
ferent task sets, as if a special state of preparation was engaged for each task. 
Since Sternberg (1969), it has been common to define processes in terms of 
the effects of variables, and these different patterns of effects suggest dif-
ferent processes. However, the target functions may also reflect differences 
in memory retrieval. The different cues associated with different tasks may 
retrieve different things from memory. In particular, the strength with which 
each digit is associated with each task category may differ between tasks, and 
those differences in associative strength may be sufficient to produce differ-
ent target functions. We explore this possibility below.

Reconfiguration and computational modelling
In our view, the best way to define reconfiguration is theoretical. If recon-

figuration involves changing the states of the cognitive system, then those 
states must be defined in a way that allows them to be measured, so changes 
in states can be detected. This is difficult because the states of the cognitive 
system are not directly observable. They must be inferred somehow, and in 
our view, the best way to make inferences is to model the tasks computation-
ally and define the states of the cognitive system in terms of the states of 
the computational model (Logan & Gordon, 2001). Computational models of 
specific tasks are tractable because their inputs and outputs are grounded in 
states of the environment. We know what stimuli drive performance and we 
know what responses are produced at what times, and these constraints allow 
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us to distinguish between alternative models. Models of reconfiguration can-
not be grounded directly in the environment because their inputs are states of 
the cognitive system and their outputs are changes in the states of the cogni-
tive system. However, they can be grounded in computational models of the 
specific tasks subjects switch between. Thus, a task set may be defined as a 
set of parameters in a computational model that is sufficient to program the 
model to perform particular task-relevant computations (Logan & Gordon, 
2001; Schneider & Logan, 2007a; Vandierendonck et al., 2010). In this defini-
tion, reconfiguration involves changing model parameters to reprogram the 
model to perform different computations. We can measure the parameters 
by fitting models to data and we can evaluate changes in parameters across 
experimental conditions (Logan & Gordon, 2001). This is the approach we 
adopt in the present article in modelling target functions. We define recon-
figuration and memory retrieval in terms of the same computational model, 
which sharpens the contrast between them and focuses the argument on es-
sential differences.

ITAM, ECTVA, and compound-cue retrieval

We chose to model task switching with the instance theory of attention and 
memory (ITAM; Logan, 2002). ITAM is a generalisation of several previous 
models, including Bundesen’s (1990) theory of visual attention (TVA), Logan 
and Gordon’s (2001) executive control of TVA model, Nosofsky’s (1986) gen-
eralised context model (GCM), Logan’s (1988) instance theory of automatic-
ity, and Nosofsky and Palmeri’s (1997) exemplar-based random walk model 
(EBRW). ITAM incorporates each of its ancestors as a special case and so 
inherits their successes in applications to many different phenomena of atten-
tion, categorisation, and memory.

ITAM assumes that performance of all of the tasks it addresses relies on a 
biased choice process that depends on similarities and associations between 
stimuli. Attention involves choice among display elements, which is modu-
lated by priorities and response biases. Categorisation and memory retrieval 
involve choice among memory representations, which is modulated by re-
sponse biases. Similarities are represented as distances in multidimensional 
similarity space, denoted as η(i|x), indicating the similarity between object x 
and category i. Biases are represented as βi, indicating the bias to categorise 
objects as members of category i. Priorities are represented as πk, indicating 
the importance of objects in category k. Our analysis focuses on single-target 
displays, which are prevalent in task-switching experiments, so we focus on 
βs and ignore πs, although πs and βs work in the same manner, multiplying 
η values (see Logan, 2002).
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In ITAM, the tendency to categorise object x as a member of category 
i, v(i|x), depends on the product of η and β values, i.e., v(i|x) = η(i|x)βi. The 
probability of choosing object x and categorising it as a member of category 
i is the ratio of η(i|x)βi and the sum of the ηβ products that represent all pos-
sible categorisations for the current display:

(1)

This is the familiar Luce choice ratio, which is common to all models 
subsumed in ITAM. If there is a single choice, as in Bundesen’s (1990) ap-
plications of TVA to attention and Nosofsky’s (1986) applications of GCM 
to categorisation, then Equation 1 gives the choice probability. If choices are 
aggregated over time in a stochastic accumulator, as in Nosofsky and Palm-
eri’s (1997) applications of EBRW to RT and choice probabilities and Logan 
and Gordon’s (2001) applications of ECTVA to dual-task performance, then 
Equation 1 gives the drift rate of a random-walk process. RTs and accuracies 
for the random walk are functions of the drift rate in Equation 1 (the func-
tions are given below).

ECTVA and reconfiguration

Logan and Gordon (2001) applied ITAM to task switching in dual-task 
experiments, defining a task set in terms of the ITAM parameters that are 
assumed to be controlled by executive processes (i.e., β and π, as discussed 
previously, and K, the response threshold for the random walk). They as-
sumed the η parameters were not subject to online executive control, being 
determined by the quality of the current stimulus and the subject’s history 
with members of the relevant categories. In their model, switching task set 
involved changing the parameters that the executive controlled. To illustrate, 
consider magnitude and parity judgments of the digit 7, which is higher 
than 5 and odd. Thus, η(Odd|7) and η(High|7) would have high values and 
η(Even|7) and η(Low|7) would have low values. The digit would likely be 
categorised as odd or high. If the task was to categorise parity, then βParity 
would be greater than βMagnitude, so the product η(Odd|7)βParity would be 
greater than the products η(High|7)βMagnitude, η(even|7)βParity, and η(Low|7)
βMagnitude, so Equation 1 would dictate that the probability of choosing “odd” 
would be greater than the probability of choosing “high,” “even,” or “low.” If 
the task was to categorise magnitude, then βMagnitude would be greater than 
βParity, so η(High|7)βMagnitude would be greater than η(Odd|7)βParity, etc., so 
the probability of choosing “high” would be greater than the probability of 
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choosing “odd,” etc. The key point here is that β acts as a gain control, imple-
menting cognitive control by increasing the gain on desired categorisations 
and decreasing the gain on undesired categorisations, gating the response 
to the target. Another key point is that changing β, like changing other ex-
ecutive-controlled parameters (π and K), reconfigures the cognitive system 
so that it responds differently to the same input. This is the central idea in 
reconfiguration theories of task switching.

Compound-cue retrieval and task switching

Schneider and Logan (2005) applied ITAM to task switching as well, but 
focused their analysis on the explicit task-cuing procedure, in which the tar-
get stimulus is preceded by a cue that indicates the task to perform on it. For 
example, PARITY would indicate that an odd-even judgment was required 
and MAGNITUDE would indicate that a high-low judgment was required. 
The explicit task-cuing procedure involves two stimuli, so two η values have 
to be considered, one for the cue and one for the target. The key question 
Schneider and Logan had to address was how to combine the η values for the 
cue and the target. They chose multiplication:

(2)

where y is the cue, x is the target, and i is the category. They assumed that 
these products act as compound cues (joint retrieval cues) that drive the 
memory retrieval processes on which performance depends. Multiplication 
is justified in ITAM’s mathematics and its assumptions about similarity. Ac-
cording to ITAM, similarity is an exponential function of distance in multi-
dimensional space, so

The cue and the target are separate objects and so constitute separable di-
mensions. For separable dimensions, distances simply add (Logan, 2002), so

Because of the multiplication in Equation two, the ηs for the cues act as 
gain controls for the ηs for the targets, increasing the gain on cued catego-
risations and decreasing the gain on uncued categorisations, gating the re-
sponse to the target. If the target was the digit 7, then η(Odd|7) and η(High|7) 
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(i | x,y)  exp(dxi  dyi)

 exp(dxi)exp(dyi)
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target was the digit 7, then (Odd|7) and (High|7) would have high values. If the cue 

was PARITY, then (Odd|PARITY) and (Even|PARITY) would be high and 

(High|PARITY) and (Low|PARITY) would be low. Consequently, 

(Odd|7)(Odd|PARITY) would be greater than (High|7)(High|PARITY), so Equation 

1 would dictate that the probability of choosing “odd” would be greater than the 

probability of choosing “high.” Thus, cue-based gating has the same effect as bias-based 

gating. Compound-cue retrieval can accomplish task switching in the same way as 

reconfiguration. Both approaches assume that target processing is modulated by gain 
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x and the cue y, is: 

 v(i | x,y) (i | x)(i | y)i       (3). 

The effect of the target representation, (i|x), can be modulated by changing 

either the cue representation, (i|y), or the bias, i. Thus, compound-cue retrieval and 

reconfiguration accounts of task switching may mimic each other. Our applications of the 

models to target functions address the possibility of mimicry. 
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would have high values. If the cue was PARITY, then η(Odd|PARITY) and 
η(Even|PARITY) would be high and η(High|PARITY) and η(Low|PARITY) 
would be low. Consequently, η(Odd|7)η(Odd|PARITY) would be greater than 
η(High|7)η(High|PARITY), so Equation 1 would dictate that the probability 
of choosing “odd” would be greater than the probability of choosing “high.” 
Thus, cue-based gating has the same effect as bias-based gating. Compound-
cue retrieval can accomplish task switching in the same way as reconfigura-
tion. Both approaches assume that target processing is modulated by gain 
control, instantiated as multiplication of target η values in ITAM. To express 
this idea formally, the strength, v(i|x,y), of the tendency to respond with cat-
egory i given the target x and the cue y, is:

(3)

The effect of the target representation, η(i|x), can be modulated by chang-
ing either the cue representation, η(i|y), or the bias, βi. Thus, compound-cue 
retrieval and reconfiguration accounts of task switching may mimic each 
other. Our applications of the models to target functions address the possibil-
ity of mimicry.

Compound-cue retrieval, reconfiguration, and target functions

Schneider and Logan (2005) reported three explicit task-cuing experi-
ments in which subjects switched between magnitude (lower or higher than 
5) and parity (odd or even) judgments of single-digit targets (1-9, excluding 
5). Mean RTs for all combinations of task and target were not reported in the 
original article, so we calculated them for each subject in each experiment, 
collapsing across task transition and cue-target interval to obtain an adequate 
number of observations per condition. These data were submitted to a 3 (ex-
periment) x 2 (task) x 8 (target) mixed-factors analysis of variance, with ex-
periment as a between-subjects factor and task and target as within-subjects 
factors. There were significant main effects of task, F(1, 81) = 20.45, MSe = 
24,493.21, p < .001, ηp

2 = .20, and target, F(7, 567) = 4.42, MSe = 8,760.28, 
p < .001, ηp

2 = .05, as well as a significant task x target interaction, F(7, 567) 
= 15.22, MSe = 4,755.60, p < .001, ηp2 = .16. The main effect of experiment 
and all interactions involving experiment were non-significant (all ps > .10), 
so we collapsed across experiments to obtain the target functions in Figure 1.
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The target functions were clearly different for magnitude and parity judg-
ments, consistent with the significant task x target interaction. For magnitude 
judgments, RT became shorter as the distance between the target and the 
reference point (5) increased. A contrast with weights representing a linear 
decline in RT with distance from 5 was highly significant, F(1, 567) = 76.60, 
MSe = 4,755.60, p < .001, ηp

2 = .12. For parity judgments, no such distance 
effect was present, but RT was longer for odd targets (M = 1,015 ms) than for 
even targets (M = 989 ms), F(1, 567) = 23.91, MSe = 4,755.60, p < .001, ηp

2 = 
.04. The question of interest is how well these different target functions can 
be accounted for with compound-cue retrieval and reconfiguration models 
articulated in the language of ITAM.

Target representations and target functions

To account for target functions, we assume that the presented target is 
encoded to a level that results in a semantic, categorical representation (Sch-
neider & Logan, 2010). The nature of this representation depends on the asso-
ciations between particular digits and the target categories High, Low, Odd, 
and Even. For magnitudes, we assumed that associations between the digits 
and the category Low were strong for the lower digits and became weaker for 
the higher digits. We assumed that associations between the digits and the 
category High were strong for the higher digits and became weaker for lower 
digits. For simplicity, we assumed that association strength varied linearly 

Figure 1
Mean response time for each digit as a function of judgment (magnitude versus par-

ity) in Experiments 1-3 of Schneider and Logan (2005)
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with the value of the digits, with association strengths decreasing from 1-9 
for the category Low and increasing from 1-9 for the category High (Choplin 
& Logan, 2005; Miller & Gelman, 1983; Shepard, Kilpatric, & Cunningham, 
1975). We assumed a common slope, m, for both linear functions (formally, 
-m and m). More complex monotonic functions (e.g., logarithmic) with dif-
ferent derivatives may yield better fits, but simple linear functions were suf-
ficient for our purposes.

The top panel in Figure 2 shows the linear functions specifying the strength 
of association between each digit and the response categories Low and High, 
that is, η(Low|x) and η(High|x) as a function of digit x. The lower left panel 
shows the effective association strength when the magnitude task is cued. The 
effective association strengths are the products of η values for targets and cues, 
that is, η(Low|x)η(Low|MAGNITUDE) and η(High|x)η(High|MAGNITUDE) 
(see Equation 2). We assume that the target retrieves all responses associated 
with it (e.g., 7 retrieves both High and Odd), so the η(Low|x) and η(High|x) val-
ues remain the same regardless of the cue. The cue signals the magnitude task, 
so η(High|MAGNITUDE) and η(Low|MAGNITUDE) are high and the prod-
ucts η(Low|x)η(Low|MAGNITUDE) and η(High|x)η(High|MAGNITUDE) 
will be high, depending on the value of the digit. Subjects would be likely 
to respond “high” or “low” depending on the value of the digit. The lower 
right panel shows the effective association strength when the parity task is 
cued. Again, the η(Low|x) and η(High|x) values remain the same and the 
effective association strengths are the products η(Low|x)η(Low|PARITY) 
and η(High|x)η(High|PARITY). However, this time, the cue signals parity, 
so η(High|PARITY) and η(Low|PARITY) are low and the products are low. 
Subjects would be unlikely to respond “high” or “low” regardless of the value 
of the digit.

Figure 3 shows the functions specifying the strength of association be-
tween each digit and the response categories Odd and Even for the parity 
task. Following previous research (Dehaene, Bossini, & Giraux, 1993; Hines, 
1990) and the data in Figure 1, we assumed the strength of association be-
tween even digits and the category Even was greater than the strength of 
association between odd digits and the category Odd. That is, η(Even|x) > 
η(Odd|x). In addition, we assumed that associations between even digits and 
the category Odd and associations between odd digits and the category Even 
were very weak. These assumptions resulted in the saw-tooth patterns shown 
in the top panel of Figure 3.

The lower panels of Figure 3 show the effective association strengths when 
target information is combined with cue information, following Equation 2. 
As before, we assume that the targets retrieve parity information regardless of 
the cue, so η(Even|x) and η(Odd|x) remain high for both cues. When the parity 
task is cued, η(Even|PARITY) and η(Odd|PARITY) are high, so the products 
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η(Even|x)η(Even|PARITY) and η(Odd|x)η(Odd|PARITY) are high, and subjects 
are likely to respond “odd” or “even,” depending on the value of the digit. When 
the magnitude task is cued, η(Even|MAGNITUDE) and η(Odd|MAGNITUDE) 
are low, so the products η(Even|x)η(Even|MAGNITUDE) and η(Odd|x)
η(Odd|MAGNITUDE) are low and subjects are unlikely to respond “odd” or 
“even” regardless of the value of the digit.

Modelling compound-cue retrieval

We modelled compound-cue retrieval by adapting Schneider and Logan’s 
(2005, 2009) random-walk model of task switching, which was written in the 
language of ITAM (Logan, 2002). The model was implemented as a set of 
equations in Microsoft Excel. For each combination of task and target, Equa-
tion 3 was computed for each response category (Low, High, Odd, and Even). 
The η value for the cue, η(i|y), was ηP if the cue was associated with the rel-
evant task and ηU if the cue was associated with the irrelevant task, with ηP > 
ηU. The η value for the target, η(i|x), was taken from the magnitude or parity 
representations depicted in Figures 2 and 3. 

Figure 2
Cue-based gating of the magnitude representation. The top panel shows  

the magnitude representation, which is based on η(i|x) values, where i is Low or 
High and x is a digit from 1-9, excluding 5. The bottom-left and bottom-right panels 
show the effective association strengths obtained with magnitude and parity cues, 
respectively (i.e., η(i|x)η(i|y) products in Equation 2). Note that the y-axis scales 

differ for the top and bottom panels
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The β value was either βRelevant or βIrrelevant, where βRelevant represents the 
bias associated with the relevant response categories (i.e., for the cued task) 
and βIrrelevant represents the bias associated with the irrelevant response cat-
egories (i.e., for the uncued task). For example, if the magnitude task was to 
be performed, βRelevant would be associated with the Low and High response 
categories and βIrrelevant would be associated with the Odd and Even re-
sponse categories. We assume that β values are associated with task-specific 
response categories based on the presented cue being encoded to a level that 
results in a semantic, categorical representation of the task to be performed 
(Arrington, Logan, & Schneider, 2007).

The resultant v values from Equation 3 were used in Equation 1 to com-
pute drift rates for the random walk. Given that two response categories were 
mapped onto each response key, a composite drift rate (P(An|x,y)) was calcu-
lated for each response key (n = 1 for the correct response key and n = 2 for 
the incorrect response key) by summing the drift rates for the two response 
categories assigned to that key; this was done for each possible response-key 
mapping. The composite drift rates were then used in conjunction with the 
random-walk criterion K to compute the number of steps (NStep) for the ran-
dom walk to finish, given target x and cue y, using the following equations 

Figure 3
Cue-based gating of the parity representation. The top panel shows the parity  

representation, which is based on η(i|x) values, where i is Odd or Even and x is 
a digit from 1-9, excluding 5. The bottom-left and bottom-right panels show  

the effective association strengths obtained with magnitude and parity cues, respec-
tively (i.e., η(i|x)η(i|y)  products in Equation 2). Note that the y-axis scales differ 

for the top and bottom panels
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(derived by Busemeyer, 1982, and adapted from Nosofsky & Palmeri, 1997, 
by assuming symmetrical random-walk boundaries):

(4a)

and

(4b)

(5)

The time for the random walk to finish was then computed by multiplying 
NStep by a (the time per step). The probability that the correct response was 
selected by the random walk was computed using the following equations 
(Nosofsky & Palmeri, 1997):

(6a)
and

(6b)

For each combination of task and target, mean random-walk time and 
accuracy were calculated by averaging across the values for the different 
response-key mappings. Mean random-walk time was then added to an  
RTBase value, which represents the time for non-decision processes, to obtain 
predicted RTs. In the fits reported below, the model was fit to the 16 data 
points shown in Figure 1, using the Solver function in Excel to minimise the 
root mean-squared deviation (RMSD) between observed and predicted RTs 
(the product-moment correlation, r, was also computed), with the constraint 
that the predicted accuracies be greater than or equal to the observed accu-
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racies (Ms = 96.7% and 95.3% for magnitude and parity judgments, respec-
tively).

The model was fit to the data with five free parameters: ηOdd, ηEven, a, RT-

Base-Magnitude, and RTBase-Parity. The only constraint was that ηOdd and ηEven 
had to be greater than 0. Other parameters in the model were set to values 
derived from past model fits or set to arbitrary values. Specifically, ηU = .016 
and ηP = .260, which are the means of the best-fitting ηU and ηP values from 
Schneider and Logan’s (2005) fits to their data collapsed across tasks and 
targets (see their Table 2). The slope of the magnitude function was m = .005 
(many other values yielded equivalent results) and the random-walk criterion 
was K = 6 (which yielded an acceptable level of accuracy). Since we assumed 
there was no reconfiguration in this version of the model, we fixed βRelevant = 
βIrrelevant = 1, meaning that the bias toward each response category was the 
same regardless of whether parity or magnitude was the cued task.

This five-parameter model yielded the predictions shown in Figure 4; the 
best-fitting parameter values are provided in Table 1. 

The model produced a satisfactory fit to the data, with RMSD = 14 ms and 
r = .890, capturing the basic shapes of the different target functions. The fit 
was almost perfect for the magnitude data (RMSD = 3 ms, r = .991), but less 
optimal for the parity data (RMSD = 20 ms, r = .551), which were character-
ised by a much more irregular target function (see Figure 1).

Figure 4
Predicted mean response times for each digit as a function of judgment  

(magnitude versus parity) in Experiments 1-3 of Schneider and Logan (2005)
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Two important consequences for task performance can be inferred from 
Figure 4. First, task performance is driven primarily by the target representa-
tion that is associated with the same response categories as the cue (the mag-
nitude representation for a magnitude cue – see Figure 2; the parity represen-
tation for a parity cue – see Figure 3). Second, task performance is relatively 
unaffected by the target representation that is not associated with the same 
response categories as the cue (the magnitude representation for a parity cue 
– see Figure 2; the parity representation for a magnitude cue – see Figure 3). 
Thus, cue-based gating of each target representation results in a random walk 
that chooses between the two task-relevant response categories (Low and 
High for magnitude judgments; Odd and Even for parity judgments) 

A corollary of this cue-based gating is that differences in association 
strength in the task-relevant target representation will dominate task per-
formance and determine the predicted target function. Given that each task 
is associated with a different target representation, different target functions 
will emerge. For magnitude judgments, distance effects are predicted be-
cause cue-based gating allows the magnitude representation to dominate task 
performance (see Figure 2). Because the difference in association strength 
for the Low and High response categories increases in each direction as one 
moves away from 5 (see Figure 2), drift rate increases (Equation 1), and the 

Table 1
Best-fitting parameter values and measures of goodness of fit for the fits of  

the compound-cue retrieval model with and without reconfiguration to Schneider 
and Logan’s (2005) data

Variable  Without Reconfiguration  With Reconfiguration

Parameter
ηU  .016  .016
ηP  .260  .260
ηOdd  .034  .038
ηEven  .072  .072
a  3.436  3.424
βRelevant  1.000  1.000
βIrrelevant  1.000  .386
m  .005  .005
K  6.000  6.000
RTBase-Magnitude  910.588  911.681
RTBase-Parity  955.641  964.370

Measure of goodness of fit
RMSD  14.057  14.048
r  .890  .890

Note: RMSD = root mean-squared deviation between observed and predicted values; r =
product-moment correlation. Free parameters in each model fit are denoted in bold font.
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number of steps it takes the random walk to select a response decreases 
(Equation 4a), resulting in a shorter RT and a distance effect (see Figure 
4). For parity judgments, even though the same magnitude representation 
is accessed, there are no distance effects because cue-based gating quashes 
the contribution of the magnitude representation to task performance (see 
Figure 2). Instead, the parity representation dominates task performance (see 
Figure 3). Because there is a difference in association strength for the Even 
and Odd response categories, with ηEven > ηOdd (see Table 1; see also Figure 
3), drift rate is higher for even targets than for odd targets (Equation 1), and 
the random walk has to take fewer steps to select a response for even targets 
(Equation 4a), resulting in shorter RTs for even targets (see Figure 4). As with 
the distance effect for parity judgments, this parity effect does not occur for 
magnitude judgments because cue-based gating quashes the contribution of 
the parity representation to task performance (see Figure 2). Consequently, 
compound-cue retrieval allows the model to produce different target func-
tions for different tasks and to capture Schneider and Logan’s (2005) task-
switching data without assuming reconfiguration.

But what if we allow reconfiguration to occur? We added reconfiguration 
to compound-cue retrieval by allowing βIrrelevant to be a free parameter while 
βRelevant was fixed to equal 1, so β values could be different for each task. 
This six-parameter model yielded predictions that were practically identical 
to those obtained without reconfiguration; the best-fitting parameter values 
are provided in Table 1 and the measures of goodness of fit were RMSD = 
14 ms and r = .890. We tested whether the slight improvement in goodness 
of fit (at the fourth decimal place of r) was significant and found that it was 
not, F(1, 10) < 1, indicating that reconfiguration is not necessary to account 
for Schneider and Logan’s (2005) data. Compound-cue retrieval is sufficient.

Modelling reconfiguration

Despite our findings, it is tempting to model the target function data in 
terms of reconfiguration. Reconfiguration is possible in ITAM (Logan, 2002) 
and it was a core idea in ECTVA (Logan & Gordon, 2001). Indeed, the sym-
metry of effects of cue-based gating in compound-cue retrieval and bias-
based gating in reconfiguration (see Equation 3) suggests that it should be 
possible to model the target function data simply by reversing the roles of 
the cues and biases in the models that were fit to the data. Multiplication is 
multiplication, and the equations work the same whether the multiplier that 
is modulated is interpreted as a cue (i.e., η(i|y)) or a bias (i.e., βi). If this pos-
sibility were feasible, then the model fits would indicate that reconfiguration 
is sufficient to account for the data and compound-cue retrieval does not add 
anything to the fits beyond reconfiguration.
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However, there is a major problem with this account of the data: it would 
require η(Odd|cue) and η(Even|cue) to equal η(Low|cue) and η(High|cue) 
on each trial, regardless of the presented cue, to mimic the fact that βIrrel-

evant equalled βRelevant on each trial. This is not plausible. The η values for 
categories associated with the presented cue should be higher than the η val-
ues for categories that are not associated with the presented cue. Otherwise, η 
values for the cues are not meaningful psychologically. Schneider and Logan 
(2005) argued that a presented cue could activate an associated cue that was 
not presented (so ODD could activate EVEN), but that was plausible only 
for related cues that signalled the same task (see also Logan & Schneider, 
2006b). A cue for one task should not activate a cue for an unrelated task. 
Even if it did, the activation for the unpresented cue should be much less than 
the activation of the cue that was actually presented. Note that the ηs for the 
targets implement the assumption that η values are greater for presented than 
for unpresented targets. Otherwise, the model could not respond appropri-
ately. We suggest that ηs for cues and targets should follow the same rules in 
the model, which means that ηs for presented cues should be greater than ηs 
for unpresented cues. Thus, it is not possible to simply reverse the roles for 
ηs and βs.

Another possibility for implementing reconfiguration is to reinterpret the 
fits in which β was allowed to vary between tasks, letting β play the role of 
the cue and η play the role of β. The problem with this possibility is that 
the model does not fit the data any better than the original model, in which 
only the ηs for the cues varied. The variation in η (or β) is redundant. Only 
one multiplier needs to vary to change the target functions (see Equation 3). 
The argument against this redundant reconfiguration model is essentially an 
argument for parsimony, and arguments for parsimony are often weak. They 
are stronger when the specific models are embedded in a larger family of 
models with broad scope and a wide range of applicability. The compound-
cue retrieval and reconfiguration models are embedded in the ITAM family 
of models, which has many members (Logan, 2002), and that makes the case 
for parsimony stronger.

We have argued that reconfiguration is not necessary to explain the data, 
but that argument rests on the assumption that βs are the same for both tasks 
(i.e., βIrrelevant = βRelevant). How plausible is that assumption? One way to 
answer this question is to consider the consequences of allowing all βs to 
be high (and equal) for all tasks, as we did when we modelled the data with 
compound-cue retrieval. According to Equation 3, the consequences should 
be minimal, provided that the ηs for the cues vary. When several terms are 
multiplied together, one small multiplier can decimate the product even if 
the other multipliers are large. This was the key insight in Medin and Schaf-
fer’s (1978) context model of classification, which is the great-grandparent 
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of ITAM. Allowing all βs to be high will have some effect on performance, 
however. The ηηβ products for irrelevant categorisations (Equation 3) add a 
small amount to the denominator of the choice ratio in Equation 1, decreas-
ing drift rate and increasing RT and error rate. These effects will be small, 
however.

Discussion

Our comparison between reconfiguration and compound-cue retrieval ac-
counts of task switching focused on their ability to account for target func-
tions, which are plots of performance on individual target stimuli while sub-
jects perform different tasks. Empirically, the target functions for parity and 
magnitude judgments of digits are quite distinct (see Figure 1), but our model 
fits showed that they could be accounted for very well by compound-cue 
retrieval without reconfiguration. We believe it is significant that our com-
parisons of reconfiguration and compound-cue retrieval were done in the 
context of the same formal theory (i.e., ITAM; Logan, 2002), so the alterna-
tive models had an equal footing on a level playing ground. In this respect, 
our evaluation of response selection in task switching is similar to Logan 
and Bundesen’s (2003) evaluation of preparation and the reduction of switch 
costs in task switching. Logan and Bundesen also compared reconfiguration 
and compound-cue models in the same mathematical framework and, like 
us, found that compound-cue retrieval provided a better account of the data.

The scope of compound-cue retrieval

A major strength of our compound-cue retrieval model is that it accounts 
for the role of cues in task switching, both in preparation for an impend-
ing task and in selecting responses in an ongoing task. Before 2003, few 
researchers paid any attention to the cues, even in explicit task-cuing experi-
ments. They concerned themselves with the consequences of having encoded 
the cue rather than with the act of encoding the cue itself, typically assuming 
that the consequences involved reconfiguration on task-switch trials. Then, 
Mayr and Kliegl (2003) and Logan and Bundesen (2003) noted a confound 
between cue repetition and task repetition in explicit task-cuing experiments 
that used one cue for each task and they presented a method for removing the 
confound that involved using two cues for each task (e.g., MAGNITUDE and 
HIGH-LOW for a magnitude task). Their research focused attention on the 
processes by which cues were encoded and the contribution of cue encoding 
to switch costs (also see Logan & Schneider, 2006a, 2006b; Logan, Schnei-
der, & Bundesen, 2007; Schneider & Logan, 2006b, 2007c). Shortly after-
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ward, Schneider and Logan (2005) addressed the role of cues in retrieving 
responses in task switching, proposing a computational model of compound-
cue retrieval that accounted for cue encoding and response selection (also see 
Schneider & Logan, 2009). As a result, the role of cues in task switching is 
better understood theoretically and empirically.

Compound-cue retrieval may play a role in task-switching situations be-
yond explicit task cuing, in which no explicit cues are presented. For exam-
ple, in the task span procedure (Logan, 2004) and the repeating lists pro-
cedure (Schneider, 2007; Schneider & Logan, 2006a; see also Schneider & 
Logan, 2007b), subjects memorise a list of tasks to perform and then respond 
to a series of targets by successively retrieving tasks on the list. We suggest 
they retrieve cue-like representations from the list and combine them with 
the targets to form compound cues, which they use to retrieve appropriate 
responses from memory. Recently, Mayr (in press) found cue repetition ef-
fects in the task span procedure, which suggested that subjects use relatively 
low-level phonological representations to drive performance.

As another example, the voluntary task switching procedure (Arrington 
& Logan, 2004) presents no cues and requires subjects to decide for them-
selves which task to perform. Subjects may generate internal cue-like rep-
resentations, which they combine with the targets to form compound cues, 
and retrieve task-relevant responses from memory. Indeed, voluntary switch 
costs are about the same as explicitly cued switch costs (Arrington & Logan, 
2005).

More generally, we might expect to find evidence of compound-cue re-
trieval whenever tasks can be performed by memory retrieval (and many 
tasks can be performed by memory retrieval; Logan, 1988). Memory retriev-
al is cue dependent, so that different things can be retrieved by changing 
retrieval cues (Tulving & Thompson, 1973). The idea that responses appro-
priate to different tasks can be retrieved by changing the retrieval cues sits 
well with a large body of memory research. Our position has been that such 
changes in retrieval cues do not constitute a change in task set (Logan & Bun-
desen, 2003; Schneider & Logan, 2005). The task set is “respond with what 
you retrieve from memory” and the same task set is used on all trials, without 
any need to reconfigure the cognitive system. People would not normally 
think they switched tasks when they were asked for their names and then 
their addresses or when they were asked to name the capital city in Belgium 
and then to name a prominent Belgian university. These are just different 
acts of retrieval. Similarly, we do not think people switch tasks when they 
are asked whether a digit is odd or even and then whether it is lower or higher 
than 5. These, too, are just different acts of retrieval, in our view.
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Where might we find reconfiguration?

Like many researchers, we remain intrigued by the idea that people may 
reconfigure their cognitive systems to perform different tasks. We think it 
is unlikely that we will find evidence of reconfiguration in tasks that can be 
solved by memory retrieval because compound-cue retrieval seems sufficient 
for those tasks. However, we think it may be possible to find evidence of 
reconfiguration in tasks that require changes in specific parameters of mod-
els like ITAM that are associated with executive processing. Switching at-
tention from one location to another is one example of such a task. Indeed, 
Logan and Gordon (2001) proposed ECTVA largely to explain switches in 
spatial attention in dual-task situations, which required changes in π rather 
than β. Logan (2005) applied Logan and Bundesen’s (2003) reconfiguration 
model and compound-cue retrieval model to a task that required switching 
attention from one location to another and found that the reconfiguration 
model fit the data better. Schneider and Logan (2007a) had subjects switch 
between two reference points in magnitude judgments of digits and found 
reference-point switching effects that they interpreted as reconfiguration. In 
terms of ITAM, their data could be modelled by changing β values for High 
and Low response categories, which would meet the ECTVA definition of 
reconfiguration (Logan & Gordon, 2001; Vandierendonck et al., 2010).

In the end, we believe that the search for reconfiguration must be done 
with the aid of a computational model in which model parameters can be 
identified with task sets, and alternative hypotheses, like compound-cue re-
trieval, can be articulated and potentially ruled out. This article has shown, 
like much of our research before it, that we must go beyond simple opera-
tional definitions of reconfiguration in terms of switch costs, target func-
tions, and other empirical results. Without a rigorous model-based analysis, 
we cannot rule out plausible alternative hypotheses.
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